
Grundlagen von REST: Eine Einführung | 1

CAFM-Blog.de

REST steht als Akronym für „REpresentational State Transfer“ und ist ein Architekturstil für
verteilte Systeme, der auf dem HTTP-Protokoll basiert. Es wurde von Roy Fielding in seiner
Dissertation im Jahr 2000 eingeführt und hat sich seitdem als einer der wichtigsten Ansätze
für die Entwicklung von Webanwendungen etabliert. REST ermöglicht die Kommunikation
zwischen Client und Server über standardisierte Schnittstellen und fördert dadurch die
Skalierbarkeit, Zuverlässigkeit und Wartbarkeit von Webanwendungen.

REST basiert auf dem Prinzip der Ressourcen, die durch eindeutige Identifikatoren (URIs)
dargestellt werden. Diese Ressourcen können in verschiedenen Formaten wie JSON, XML oder
HTML repräsentiert werden und können durch standardisierte HTTP-Methoden wie GET, POST,
PUT und DELETE manipuliert werden. RESTful-Services sind zustandslos, was bedeutet, dass
der Server keine Informationen über den Zustand des Clients speichert. Stattdessen enthält
jede Anfrage alle erforderlichen Informationen, um sie zu verstehen und zu verarbeiten. Dies
ermöglicht eine bessere Skalierbarkeit und Zuverlässigkeit von Webanwendungen, da der
Server nicht mit dem Zustand des Clients belastet ist.

Die Prinzipien von REST
REST basiert auf einer Reihe von Prinzipien, die dazu beitragen, die Interoperabilität,
Skalierbarkeit und Wartbarkeit von Webanwendungen zu verbessern. Eines der wichtigsten
Prinzipien von REST ist die eindeutige Identifikation von Ressourcen durch URIs. Jede
Ressource sollte eine eindeutige URI haben, die es dem Client ermöglicht, auf sie zuzugreifen
und mit ihr zu interagieren.

Ein weiteres wichtiges Prinzip von REST ist die Verwendung von standardisierten HTTP-
Methoden wie GET, POST, PUT und DELETE zur Manipulation von Ressourcen. Diese
Methoden ermöglichen es dem Client, die gewünschten Aktionen auf den Ressourcen
auszuführen, was zu einer konsistenten und vorhersehbaren Interaktion mit dem Server
führt.

Ein weiteres wichtiges Prinzip von REST ist die Verwendung von Hypermedia als Motor der
Anwendungszustand (HATEOAS). Dies bedeutet, dass der Server dem Client Links zu anderen
Ressourcen bereitstellt, die mit der aktuellen Ressource verknüpft sind. Dadurch kann der
Client die Anwendungszustand navigieren, ohne dass er über spezifische Endpunkte

https://www.cafm-blog.de


Grundlagen von REST: Eine Einführung | 2

CAFM-Blog.de

informiert sein muss.

Die Architektur von REST
Die Architektur von REST basiert auf dem Konzept der Ressourcen, die durch eindeutige
Identifikatoren (URIs) dargestellt werden. Diese Ressourcen können in verschiedenen
Formaten wie JSON, XML oder HTML repräsentiert werden und können durch standardisierte
HTTP-Methoden wie GET, POST, PUT und DELETE manipuliert werden.

Ein weiteres wichtiges Konzept in der Architektur von REST ist die zustandslose
Kommunikation zwischen Client und Server. Das bedeutet, dass jede Anfrage des Clients alle
erforderlichen Informationen enthält, um vom Server verstanden und verarbeitet zu werden.
Der Server speichert keine Informationen über den Zustand des Clients zwischen den
Anfragen, was zu einer besseren Skalierbarkeit und Zuverlässigkeit von Webanwendungen
führt.

Ein weiteres wichtiges Konzept in der Architektur von REST ist die Verwendung von
Hypermedia als Motor der Anwendungszustand (HATEOAS). Dies bedeutet, dass der Server
dem Client Links zu anderen Ressourcen bereitstellt, die mit der aktuellen Ressource
verknüpft sind. Dadurch kann der Client die Anwendungszustand navigieren, ohne dass er
über spezifische Endpunkte informiert sein muss.

Ressourcen und URIs
Ressource URI

Homepage www.beispiel.de

Produktseite www.beispiel.de/produkte

https://www.cafm-blog.de/en/blog/bim-the-future-of-architectural-planning/
https://www.cafm-blog.de/en/blog/bim-the-future-of-architectural-planning/
https://www.cafm-blog.de


Grundlagen von REST: Eine Einführung | 3

CAFM-Blog.de

Kontaktseite www.beispiel.de/kontakt

Ressourcen sind das zentrale Konzept in REST und werden durch eindeutige Identifikatoren
(URIs) dargestellt. Eine Ressource kann alles sein, was über das Internet identifizierbar ist,
wie zum Beispiel ein Dokument, ein Bild oder ein Benutzerprofil. Jede Ressource sollte eine
eindeutige URI haben, die es dem Client ermöglicht, auf sie zuzugreifen und mit ihr zu
interagieren.

URIs sind hierarchisch strukturiert und können Parameter enthalten, um spezifische Aspekte
einer Ressource anzugeben. Zum Beispiel könnte eine URI für ein Benutzerprofil die ID des
Benutzers als Parameter enthalten, um auf das Profil eines bestimmten Benutzers
zuzugreifen.

HTTP-Methoden in REST
HTTP-Methoden spielen eine zentrale Rolle in REST und werden verwendet, um Ressourcen
zu manipulieren. Die wichtigsten HTTP-Methoden in REST sind GET, POST, PUT und DELETE.

Die GET-Methode wird verwendet, um eine bestimmte Ressource vom Server abzurufen. Der
Client sendet eine GET-Anfrage an den Server und erhält die angeforderte Ressource als
Antwort.

Die POST-Methode wird verwendet, um eine neue Ressource auf dem Server zu erstellen. Der
Client sendet eine POST-Anfrage an den Server mit den Daten für die neue Ressource und
der Server erstellt die Ressource entsprechend.

Die PUT-Methode wird verwendet, um eine vorhandene Ressource auf dem Server zu
aktualisieren. Der Client sendet eine PUT-Anfrage an den Server mit den aktualisierten Daten
für die Ressource und der Server aktualisiert die Ressource entsprechend.

Die DELETE-Methode wird verwendet, um eine bestimmte Ressource vom Server zu löschen.
Der Client sendet eine DELETE-Anfrage an den Server und die Ressource wird vom Server

https://www.cafm-blog.de/en/blog/select-data-for-cafm-data-maintenance/
https://www.cafm-blog.de/en/blog/select-data-for-cafm-data-maintenance/
https://www.cafm-blog.de


Grundlagen von REST: Eine Einführung | 4

CAFM-Blog.de

gelöscht.

Statuscodes in REST
Statuscodes spielen eine wichtige Rolle in REST und werden verwendet, um den Status einer
Anfrage an den Server zu kennzeichnen. Die wichtigsten Statuscodes in REST sind 200 (OK),
201 (Created), 404 (Not Found) und 500 (Internal Server Error).

Der Statuscode 200 (OK) wird verwendet, um anzuzeigen, dass die Anfrage erfolgreich war
und die angeforderte Ressource zurückgegeben wurde.

Der Statuscode 201 (Created) wird verwendet, um anzuzeigen, dass eine neue Ressource
erfolgreich erstellt wurde.

Der Statuscode 404 (Not Found) wird verwendet, um anzuzeigen, dass die angeforderte
Ressource nicht gefunden wurde.

Der Statuscode 500 (Internal Server Error) wird verwendet, um anzuzeigen, dass ein interner
Fehler auf dem Server aufgetreten ist.

Best Practices für die Verwendung von
REST
Es gibt eine Reihe von Best Practices für die Verwendung von REST, die dazu beitragen
können, die Interoperabilität, Skalierbarkeit und Wartbarkeit von Webanwendungen zu
verbessern.

Eine bewährte Praxis ist die Verwendung von eindeutigen URIs für jede Ressource. Dadurch
wird sichergestellt, dass jede Ressource eindeutig identifizierbar ist und der Client einfach auf

https://www.cafm-blog.de/en/blog/10-mistakes-facility-managers-make-when-implementing-building-management-software-and-how-to-avoid-them/
https://www.cafm-blog.de


Grundlagen von REST: Eine Einführung | 5

CAFM-Blog.de

sie zugreifen kann.

Eine weitere bewährte Praxis ist die Verwendung von standardisierten HTTP-Methoden zur
Manipulation von Ressourcen. Dies erleichtert es dem Client, die gewünschten Aktionen auf
den Ressourcen auszuführen und führt zu einer konsistenten und vorhersehbaren Interaktion
mit dem Server.

Eine weitere bewährte Praxis ist die Verwendung von Hypermedia als Motor der
Anwendungszustand (HATEOAS). Dadurch kann der Server dem Client Links zu anderen
Ressourcen bereitstellen, die mit der aktuellen Ressource verknüpft sind, was zu einer
besseren Navigierbarkeit der Anwendungszustand führt.

Insgesamt bietet REST eine leistungsstarke Architektur für die Entwicklung von verteilten
Systemen und Webanwendungen. Durch die Einhaltung der Prinzipien und Best Practices von
REST können Entwickler hochskalierbare und zuverlässige Webanwendungen entwickeln, die
einfach zu warten und zu erweitern sind.

FAQs
 

Was ist Representational State Transfer (REST)?
Representational State Transfer (REST) ist ein Architekturstil für verteilte Systeme, der auf
dem HTTP-Protokoll basiert. Es ermöglicht die Kommunikation zwischen Client und Server
über standardisierte HTTP-Methoden.

Welche Prinzipien liegen REST zugrunde?
REST basiert auf mehreren Prinzipien, darunter die Nutzung von standardisierten HTTP-

https://www.cafm-blog.de


Grundlagen von REST: Eine Einführung | 6

CAFM-Blog.de

Methoden wie GET, POST, PUT und DELETE, die eindeutige Identifikation von Ressourcen über
URIs und die Verwendung von Hypermedia zur Darstellung von Beziehungen zwischen
Ressourcen.

Welche Vorteile bietet REST?
REST bietet eine Reihe von Vorteilen, darunter Skalierbarkeit, Einfachheit, Flexibilität und die
Möglichkeit, verschiedene Plattformen miteinander zu verbinden. Es ermöglicht auch die
Trennung von Client und Server, was die Wartbarkeit und Erweiterbarkeit von Systemen
verbessert.

Wie wird REST in der Praxis eingesetzt?
REST wird in der Praxis häufig für die Entwicklung von Web-APIs verwendet, die es
ermöglichen, auf Ressourcen und Daten über standardisierte HTTP-Methoden zuzugreifen. Es
wird auch in der Entwicklung von Microservices und Cloud-Anwendungen eingesetzt.

Welche Rolle spielt REST im Kontext von Web-
Services?
REST spielt eine wichtige Rolle im Kontext von Web-Services, da es eine standardisierte und
weit verbreitete Methode zur Kommunikation zwischen verteilten Systemen darstellt. Es
ermöglicht die Entwicklung von leichtgewichtigen und interoperablen Schnittstellen für den
Datenaustausch.

How useful was this post?
Click on a star to rate it!

Submit Rating
Average rating / 5. Vote count:

https://www.cafm-blog.de


Grundlagen von REST: Eine Einführung | 7

CAFM-Blog.de

Top-Schlagwörter: Akronym, Benutzerprofil, Hypermedia, Interaktion, Interoperabilität,
Representational State Transfer, Ressource, Roy Fielding, Verstehen, fehler

Verwandte Artikel

Serviceorientierte Architektur (SOA) – Die Zukunft der Unternehmensintegration
CAFM-Software: Alles was Sie als Dummie wissen sollten ;-)
Innovationen in der Cloud-Technologie: Die Zukunft der IT

https://www.cafm-blog.de/en/slug/acronym/
https://www.cafm-blog.de/en/slug/user-profile/
https://www.cafm-blog.de/en/slug/hypermedia/
https://www.cafm-blog.de/en/slug/interaction/
https://www.cafm-blog.de/en/slug/interoperability/
https://www.cafm-blog.de/en/slug/representational-state-transfer/
https://www.cafm-blog.de/en/slug/resource/
https://www.cafm-blog.de/en/slug/roy-fielding/
https://www.cafm-blog.de/en/slug/understand/
https://www.cafm-blog.de/en/slug/faulty/
https://www.cafm-blog.de/en/blog/service-orientated-architecture-soa-the-future-of-enterprise-integration/
https://www.cafm-blog.de/en/blog/cafm-software-everything-you-need-to-know-as-a-dummy/
https://www.cafm-blog.de/en/blog/innovations-in-cloud-technology-the-future-of-it/
https://www.cafm-blog.de

